A large index theorem for orthogonal arrays, with bounds
نویسندگان
چکیده
منابع مشابه
Bounds for Resilient Functions and Orthogonal Arrays Extended Abstract
Orthogonal arrays (OAs) are basic combinatorial structures, which appear under various disguises in cryptology and the theory of algorithms. Among their applications are universal hashing, authentica-tion codes, resilient and correlation-immune functions, derandomization of algorithms, and perfect local randomizers. In this paper, we give new bounds on the size of orthogonal arrays using Delsar...
متن کاملBounds for the Co-PI index of a graph
In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.
متن کاملApproximation of Bounds on Mixed Level Orthogonal Arrays
Mixed level orthogonal arrays are basic structures in experimental design. We develop three algorithms that compute Rao and Gilbert-Varshamov type bounds for mixed level orthogonal arrays. The computational complexity of the terms involved in these bounds can grow fast as the parameters of the arrays increase and this justifies the construction of these algorithms. The first is a recursive algo...
متن کاملOrthogonal Arrays
Definition Orthogonal arrays (OAs) are objects that are most often generated via algebraic arguments. They have a number of applications in applied mathematics, and have often been studied by algebraic mathematicians as objects of interest in their own right. Our treatment will reflect their use as representations of statistical experimental designs. An OA is generally presented as a two-dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1995
ISSN: 0012-365X
DOI: 10.1016/0012-365x(95)91428-s